Circulation Response to Fast and Slow MJO Episodes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Circulation Response to Fast and Slow MJO Episodes

Filetype[PDF-5.30 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Description:
    Fast and slow Madden–Julian oscillation (MJO) episodes have been identified from 850- and 200-hPa zonal wind and outgoing longwave radiation (OLR) for 32 winters (16 October–17 March) 1980/81–2011/12. For 26 fast cases the OLR took no more than 10 days to propagate from phase 3 (convection over the Indian Ocean) to phase 6 (convection over the western Pacific). For 8 slow cases the propagation took at least 20 days. Fast episode composite anomalies of 500-hPa height (Z500) show a developing Rossby wave in the mid-Pacific with downstream propagation through MJO phases 2–4. Changes in the frequency of occurrence of the NAO+ weather regime are modest. This Rossby wave is forced by anomalous cooling over the Maritime Continent during phases 2 and 3 (seen in phase-independent wave activity flux). The upper-level anticyclonic response to phase-3 heating is a secondary source of wave activity. The Z500 slow episode composite response to MJO phases 1 and 2 is an enhanced Aleutian low followed by a North American continental high. Following phase 4 the development of an NAO+ like pattern is seen over the Atlantic, transitioning to a strong NAO− pattern by phase 8. A dramatic increase in frequency of the NAO+ weather regime follows phases 4 and 5, while a strong increase in NAO− regime follows phases 6 and 7. The responses to MJO-related heating and cooling over the Indian and western Pacific Oceans in phases 1–4 provide a source for wave activity propagating to North America, augmented by storm-track anomalies.
  • Source:
    Monthly Weather Review, 145(5), 1577-1596
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26