U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Dynamical Insights into Extreme Short-Term Precipitation Associated with Supercells and Mesovortices



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Journal of the Atmospheric Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    In some prominent extreme precipitation and flash flood events, radar and rain gauge observations have suggested that the heaviest short-term rainfall accumulations (up to 177 mm h−1) were associated with supercells or mesovortices embedded within larger convective systems. In this research, we aim to identify the influence that rotation has on the storm-scale processes associated with heavy precipitation. Numerical model simulations conducted herein were inspired by a rainfall event that occurred in central Texas in October 2015 where the most extreme rainfall accumulations were collocated with meso-β-scale vortices. Five total simulations were performed to test the sensitivity of precipitation processes to rotation. A control simulation, based on a wind profile from the aforementioned event, was compared with two experiments with successively weaker low-level shear. With greater environmental low-level shear, more precipitation fell, in both a point-maximum and an area-averaged sense. Intense, rotationally induced low-level vertical accelerations associated with the dynamic nonlinear perturbation vertical pressure gradient force were found to enhance the low- to midlevel updraft strength and total vertical mass flux and allowed access to otherwise inhibited sources of moisture and CAPE in the higher-shear simulations. The dynamical accelerations, which increased with the intensity of the low-level shear, dominated over buoyant accelerations in the low levels and were responsible for inducing more intense low-level updrafts that were sustained despite a stable boundary layer.
  • Keywords:
  • Source:
    Journal of the Atmospheric Sciences, 75(9), 2983-3009
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
    urn:sha256:538faa9e7fd2887747fff323db71ee394a72df2362313428c317157ef018f025
  • Download URL:
  • File Type:
    Filetype[PDF - 17.05 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.