Storm-Based Probabilistic Hail Forecasting with Machine Learning Applied to Convection-Allowing Ensembles
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Storm-Based Probabilistic Hail Forecasting with Machine Learning Applied to Convection-Allowing Ensembles

Filetype[PDF-3.12 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Forecasting severe hail accurately requires predicting how well atmospheric conditions support the development of thunderstorms, the growth of large hail, and the minimal loss of hail mass to melting before reaching the surface. Existing hail forecasting techniques incorporate information about these processes from proximity soundings and numerical weather prediction models, but they make many simplifying assumptions, are sensitive to differences in numerical model configuration, and are often not calibrated to observations. In this paper a storm-based probabilistic machine learning hail forecasting method is developed to overcome the deficiencies of existing methods. An object identification and tracking algorithm locates potential hailstorms in convection-allowing model output and gridded radar data. Forecast storms are matched with observed storms to determine hail occurrence and the parameters of the radar-estimated hail size distribution. The database of forecast storms contains information about storm properties and the conditions of the prestorm environment. Machine learning models are used to synthesize that information to predict the probability of a storm producing hail and the radar-estimated hail size distribution parameters for each forecast storm. Forecasts from the machine learning models are produced using two convection-allowing ensemble systems and the results are compared to other hail forecasting methods. The machine learning forecasts have a higher critical success index (CSI) at most probability thresholds and greater reliability for predicting both severe and significant hail.
  • Keywords:
  • Source:
    Weather and Forecasting, 32(5), 1819-1840
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1