Toward resolving the budget discrepancy of ozone-depleting carbon tetrachloride (CCl4): an analysis of top-down emissions from China
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Toward resolving the budget discrepancy of ozone-depleting carbon tetrachloride (CCl4): an analysis of top-down emissions from China

Filetype[PDF-885.28 KB]



Details:

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Personal Author:
  • Description:
    Carbon tetrachloride (CCl4) is a first-generation ozone-depleting substance, and its emissive use and production were globally banned by the Montreal Protocol with a 2010 phase-out; however, production and consumption for non-dispersive use as a chemical feedstock and as a process agent are still allowed. This study uses the high frequency and magnitude of CCl4 pollution events from an 8-year real-time atmospheric measurement record obtained at Gosan station (a regional background monitoring site in East Asia) to present evidence of significant unreported emissions of CCl4. Top-down emissions of CCl4 amounting to 23.6±7.1 Gg yr−1 from 2011 to 2015 are estimated for China, in contrast to the most recently reported, post-2010, Chinese bottom-up emissions of 4.3–5.2 Gg yr−1. The missing emissions (∼19 Gg yr−1) for China contribute to approximately 54 % of global CCl4 emissions. It is also shown that 89 %±6 % of CCl4 enhancements observed at Gosan are related to CCl4 emissions from the production of CH3Cl, CH2Cl2, CHCl3 and C2Cl4 and its usage as a feedstock and process agent in chemical manufacturing industries. Specific sources and processes are identified using statistical methods, and it is considered highly unlikely that CCl4 is emitted by dispersive uses such as old landfills, contaminated soils and solvent usage. It is thus crucial to implement technical improvements and better regulation strategies to reduce evaporative losses of CCl4 occurring at the factory and/or process levels.
  • Keywords:
  • Source:
    Atmos. Chem. Phys., 18, 11729–11738
  • DOI:
  • Document Type:
  • Funding:
  • Place as Subject:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1