Investigation of levoglucosan decay in wood smoke smog-chamber experiments The importance of aerosol loading temperature and vapor wall losses in interpreting results
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Investigation of levoglucosan decay in wood smoke smog-chamber experiments The importance of aerosol loading temperature and vapor wall losses in interpreting results

Filetype[PDF-1.70 MB]



Details:

  • Journal Title:
    Atmospheric Environment
  • Description:
    Levoglucosan has been extensively used as a molecular marker of biomass burning in source-apportionment studies over the last few decades. However, recent studies suggest that the atmospheric lifetime of levoglucosan may be in the order of only 1–2 days under summertime conditions relevant to prescribed/wildfires. Implications of levoglucosan reactivity to wintertime conditions, however, remain uncertain despite significant contributions of domestic wood combustion to wintertime air quality. This study presents smog chamber experiments to investigate levoglucosan decay during photo-oxidation of wood smoke over a temperature range between −8 and 10 °C.

    Significant decay in particle wall-loss corrected levoglucosan is only observed around 10 °C in these experiments. Theoretical analysis shows that the apparent chemical lifetime of levoglucosan increases at lower temperatures as well as at higher organic aerosol mass concentrations as a result of smaller vapor fractions. The chemical lifetime of a molecular marker is commonly interpreted by a relationship between relative decay in particle wall-loss corrected marker concentrations versus integrated OH exposure. However, this relationship strongly depends on vapor wall-loss rates in addition to temperature, organic aerosol concentrations, and OH concentrations. Therefore, inferred lifetimes from a small set of experiments from a single chamber cannot easily be generalized for the full range of atmospheric smoke conditions.

  • Source:
    Atmospheric Environment, 199: 224-232
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26