U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Daily rainfall estimate by emissivity temporal variation from 10 satellites



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Journal of Hydrometeorology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Rainfall retrieval algorithms for passive microwave radiometers often exploit the brightness temperature depression due to ice scattering at high-frequency channels ($85 GHz) over land. This study presents an alternate method to estimate the daily rainfall amount using the emissivity temporal variation (i.e., De) under rain-free conditions at lowfrequency channels (19, 24, and 37 GHz). Emissivity is derived from 10 passive microwave radiometers, including the Global Precipitation Measurement (GPM) Microwave Imager (GMI), the Advanced Microwave Scanning Radiometer 2 (AMSR2), three Special Sensor Microwave Imager/Sounders (SSMIS), the Advanced Technology Microwave Sounder (ATMS), and four Advanced Microwave Sounding Units-A (AMSU-A). Four different satellite combination schemes are used to derive the De for daily rainfall estimates. They are all 10 satellites, 5 imagers, 6 satellites with very different equator crossing times, and GMI only. Results show that De from all 10 satellites has the best performance with a correlation of 0.60 and RMSE of 6.52 mm, compared with the Integrated Multisatellite Retrievals for GPM (IMERG) Final run product. The 6-satellites scheme has comparable performance with the all-10-satellites scheme. The 5-imagers scheme performs noticeably worse with a correlation of 0.49 and RMSE of 7.28 mm, while the GMI-only scheme performs the worst with a correlation of 0.25 and RMSE of 11.36 mm. The inferior performance from the 5-imagers and GMI-only schemes can be explained by the much longer revisit time, which cannot accurately capture the emissivity temporal variation.
  • Keywords:
  • Source:
    Journal of Hydrometeorology, 22(3), 623-637
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:1fe5c42491176a9a21485f002767814e88c3b88cf80b7613c6c139a9230b2bc6
  • Download URL:
  • File Type:
    Filetype[PDF - 13.05 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.