Seamount effects on micronekton at a subtropical central Pacific seamount
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Seamount effects on micronekton at a subtropical central Pacific seamount

  • 2022

  • Source: Deep Sea Research Part I: Oceanographic Research Papers, 186, 103829
Filetype[PDF-24.03 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Deep Sea Research Part I: Oceanographic Research Papers
  • Personal Author:
  • Description:
    Seamounts are globally ubiquitous features with potential for increased biodiversity and biomass, including those of economically important fish. Although their ecological and economical importance is well known, the mechanisms for supporting seamount-associated communities are not well understood. In this study, the effects of an intermediate depth seamount (Cross Seamount) on the micronekton communities, forage for economically important bigeye tuna, are investigated. Relative biomass and composition estimates were calculated from multi-frequency active acoustic data from surveys over 3 years. Mean micronekton biomass was significantly higher than in the ambient environment and its composition differed over the flanks and plateau of Cross Seamount. The effects of the seamount extended ∼3.5 km away from the plateau's edge, possibly further below 400 m depth at the flanks. Micronekton occupied the water column from the surface to the 400 m deep plateau with dense aggregations immediately over the bottom at night. During the day, these micronekton migrated both horizontally and downward, occupying depths of 500–700 m, preferably along the upstream flank of the seamount. Descending micronekton from near-surface waters appeared to be temporarily blocked by the topography before swimming below the plateau at the flanks. Mechanisms supporting the increase in micronekton biomass are uncertain, although hydrographic data support topographic trapping of zooplankton and the existence of transient or semi-permanent Taylor caps.
  • Source:
    Deep Sea Research Part I: Oceanographic Research Papers, 186, 103829
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.21