Improving the Four-Dimensional Incremental Analysis Update (4DIAU) with the HWRF 4DEnVar Data Assimilation System for Rapidly Evolving Hurricane Prediction.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Improving the Four-Dimensional Incremental Analysis Update (4DIAU) with the HWRF 4DEnVar Data Assimilation System for Rapidly Evolving Hurricane Prediction.

Filetype[PDF-14.79 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Journal Title:
    Monthly Weather Review
  • NOAA Program & Office:
  • Description:
    Short-term spinup for strong storms is a known difficulty for the operational Hurricane Weather Research and Forecasting (HWRF) Model after assimilating high-resolution inner-core observations. Our previous study associated this short-term intensity prediction issue with the incompatibility between the HWRF Model and the data assimilation (DA) analysis. While improving physics and resolution of the model was found to be helpful, this study focuses on further improving the intensity predictions through the four-dimensional incremental analysis update (4DIAU). In the traditional 4DIAU, increments are predetermined by subtracting background forecasts from analyses. Such predetermined increments implicitly require linear evolution assumption during the update, which are hardly valid for rapidly evolving hurricanes. To confirm the hypothesis, a corresponding 4D analysis nudging (4DAN) method, which uses online increments is first compared with the 4DIAU in an oscillation model. Then, variants of 4DIAU are proposed to improve its application for nonlinear systems. Next, 4DIAU, 4DAN and their proposed improvements are implemented into the HWRF 4DEnVar DA system and are investigated with Hurricane Patricia (2015). Results from both the oscillation model and HWRF Model show that 1) the predetermined increments in 4DIAU can be detrimental when there are discrepancies between the updated and background forecasts during a nonlinear evolution; 2) 4DAN can improve the performance of incremental update upon 4DIAU, but its improvements are limited by the overfiltering; 3) relocating initial background before the incremental update can improve the corresponding traditional methods; and 4) the feature-relative 4DIAU method improves the incremental update the most and produces the best track and intensity predictions for Patricia among all experiments.
  • Source:
    Monthly Weather Review, 149(12), 4027-4043
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at

Version 3.26