A Comparison of HWRF Six-Hourly 4DEnVar and Hourly 3DEnVar Assimilation of Inner Core Tail Doppler Radar Observations for the Prediction of Hurricane Edouard (2014).
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A Comparison of HWRF Six-Hourly 4DEnVar and Hourly 3DEnVar Assimilation of Inner Core Tail Doppler Radar Observations for the Prediction of Hurricane Edouard (2014).

Filetype[PDF-12.77 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmosphere
  • NOAA Program & Office:
  • Description:
    Six-hourly three-dimensional ensemble variational (3DEnVar) (6H-3DEnVar) data assimilation (DA) assumes constant background error covariance (BEC) during a six-hour DA window and is, therefore, unable to account for temporal evolution of the BEC. This study evaluates the one-hourly 3DEnVar (1H-3DEnVar) and six-hourly 4DEnVar (6H-4DEnVar) DA methods for the analyses and forecasts of hurricanes with rapidly evolving BEC. Both methods account for evolving BEC in a hybrid EnVar DA system. In order to compare these methods, experiments are conducted by assimilating inner core Tail Doppler Radar (TDR) wind for Hurricane Edouard (2014) and by running the Hurricane Weather Research and Forecasting (HWRF) model. In most metrics, 1H-3DEnVar and 6H-4DEnVar analyses and forecasts verify better than 6H-3DEnVar. 6H-4DEnVar produces better thermodynamic analyses than 1H-3DEnVar. Radar reflectivity shows that 1H-3DEnVar produces better structure forecasts. For the first 24–48 h of the intensity forecast, 6H-4DEnVar forecast performs better than 1H-3DEnVar verified against the best track. Degraded 1H-3DEnVar forecasts are found to be associated with background storm center location error as a result of underdispersive ensemble storm center spread. Removing location error in the background improves intensity forecasts of 1H-3DEnVar.
  • Source:
    Atmosphere 2021, 12(8), 942
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.24