The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Incorporating Features from the Stochastic Time-Inverted Lagrangian Transport (STILT) Model into the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model: A Unified Dispersion Model for Time-Forward and Time-Reversed Applications
-
2021
-
-
Source: Journal of Applied Meteorology and Climatology, 60(6), 799-810
Details:
-
Journal Title:Journal of Applied Meteorology and Climatology
-
Personal Author:
-
NOAA Program & Office:
-
Description:The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) is a state-of-the-science atmospheric dispersion model that is developed and maintained at the National Oceanic Atmospheric Administration’s Air Resources Laboratory. In the early 2000s, HYSPLIT served as the starting point for development of the Stochastic Time-Inverted Lagrangian Transport (STILT) model that emphasizes backward-in-time dispersion simulations to determine source regions of receptors. STILT continued its separate development and gained a wide user base. Since STILT was built on a now outdated version of HYSPLIT and lacks long-term institutional support to maintain the model, incorporating STILT features into HYSPLIT allows these features to stay up to date. This paper describes the STILT features incorporated into HYSPLIT, which include a new vertical interpolation algorithm for WRF-derived meteorological input files, a detailed algorithm for estimating boundary layer height, a new turbulence parameterization, a vertical Lagrangian time scale that varies in time and space, a complex dispersion algorithm, and two new convection schemes. An evaluation of these new features was performed using tracer release data from the Cross Appalachian Tracer Experiment and the Across North America Tracer Experiment. Results show that the dispersion module from STILT, which takes up to double the amount of time to run, is less dispersive in the vertical direction and is in better agreement with observations when compared with the existing HYSPLIT option. The other new modeling features from STILT were not consistently statistically different than existing HYSPLIT options. Forward-time simulations from the new model were also compared with backward-in-time equivalents and were found to be statistically comparable to one another.
-
Keywords:
-
Source:Journal of Applied Meteorology and Climatology, 60(6), 799-810
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: