Chemical composition and hydrolysis of organic nitrate aerosol formed from hydroxyl and nitrate radical oxidation of α-pinene and β-pinene
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Chemical composition and hydrolysis of organic nitrate aerosol formed from hydroxyl and nitrate radical oxidation of α-pinene and β-pinene

Filetype[PDF-4.37 MB]



Details:

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Description:
    Atmospheric organic nitrate (ON) is thought to play a crucial role in the formation potential of ozone and aerosol, which are the leading air pollutants of concern across the world. Limited fundamental knowledge and understanding of the life cycles of ON currently hinder the ability to quantitatively assess its impacts on the formation of these pollutants. Although hydrolysis is currently considered an important loss mechanism of ON based on prior field measurement studies, this process for atmospherically relevant ON has not been well constrained by fundamental laboratory studies. In this comprehensive study, we investigated the chemical composition and hydrolysis process of particulate ON (pON) formed from the oxidation of α-pinene and β-pinene by hydroxyl (OH•) and nitrate radicals (NO3•). For pON that undergoes hydrolysis, the hydrolysis lifetime is determined to be no more than 30 min for all systems explored. This is significantly shorter than those reported in previous chamber studies (i.e., 3–6 h) but is consistent with the reported lifetime from bulk solution measurement studies (i.e., 0.02–8.8 h). The discrepancy appears to stem from the choice of proxy used to estimate the hydrolysis lifetime. The measured hydrolyzable fractions of pON (FH) in the α-pinene + OH•, β-pinene + OH•, α-pinene + NO3•, and β-pinene + NO3• systems are 23 %–32 %, 27 %–34 %, 9 %–17 %, and 9 %–15 %, respectively. While a very low FH for the NO3• oxidation system is expected based on prior studies, FH for the OH• oxidation system is surprisingly lower than predicted in past studies. Overall, the hydrolysis lifetime as well as FH obtained in this study serve as experimentally constrained parameters that are required in regional and global chemical transport models to accurately evaluate the impacts of ON on nitrogen budget and formation of ozone and aerosol.
  • Source:
    Atmos. Chem. Phys., 19, 12749–12766, 2019
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.20