Large Uncertainties in Urban-Scale Carbon Emissions
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Large Uncertainties in Urban-Scale Carbon Emissions

Filetype[PDF-1.82 MB]


  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Description:
    Accurate estimates of fossil fuel carbon dioxide (FFCO2) emissions are a critical component of local, regional, and global climate agreements. Current global inventories of FFCO2 emissions do not directly quantify emissions at local scales; instead, spatial proxies like population density, nighttime lights, and power plant databases are used to downscale emissions from national totals. We have developed a high-resolution (hourly, 1 km2) bottom-up Anthropogenic Carbon Emissions System (ACES) for FFCO2, based on local activity data for the year 2011 across the northeastern U.S. We compare ACES with three widely used global inventories, finding significant differences at regional (20%) and city scales (50–250%). At a spatial resolution of 0.1°, inventories differ by over 100% for half of the grid cells in the domain, with the largest differences in urban areas and oil and gas production regions. Given recent U.S. federal policy pull backs regarding greenhouse gas emissions reductions, inventories like ACES are crucial for U.S. actions, as the impetus for climate leadership has shifted to city and state governments. The development of a robust carbon monitoring system to track carbon fluxes is critical for emissions benchmarking and verification. We show that existing downscaled inventories are not suitable for urban emissions monitoring, as they do not consider important local activity patterns. The ACES methodology is designed for easy updating, making it suitable for emissions monitoring under most city, regional, and state greenhouse gas mitigation initiatives, in particular, for the small- and medium-sized cities that lack the resources to regularly perform their own bottom-up emissions inventories.
  • Source:
    JGR Atmospheres 122(20): 11242-11260
  • Document Type:
  • Place as Subject:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at

Version 3.26