Modelling diurnal variation magnetic fields due to ionospheric currents
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Modelling diurnal variation magnetic fields due to ionospheric currents

Filetype[PDF-18.73 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Geophysical Journal International
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Accurate models of the spatial structure of ionospheric magnetic fields in the diurnal variation (DV) band (periods of a few hours to a day) would enable use of magneto-variational methods for 3-D imaging of upper mantle and transition zone electrical conductivity. Constraints on conductivity at these depths, below what is typically possible with magnetotellurics, would in turn provide valuable constraints on mantle hydration and Earths deep water cycle. As a step towards this objective, we present here a novel approach to empirical modelling of global DV magnetic fields. First, we apply frequency domain (FD) principal components analysis (PCA) to ground-based geomagnetic data, to define the dominant spatial and temporal modes of source variability. Spatial modes are restricted to the available data sites, but corresponding temporal modes are effectively continuous in time. Secondly, we apply FD PCA to gridded surface magnetic fields derived from outputs of the physics-based Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIEGCM), to determine the dominant modes of spatial variability. The TIEGCM spatial modes are then used as basis functions, to fit (or interpolate) the sparsely sampled data spatial modes. Combining the two steps, we have a FD model of DV band global magnetic fields that is continuous in both space and time. We show that the FD model can easily be transformed back to the time domain (TD) to directly fit time-series data, allowing the use of satellite, as well as ground-based, data in the empirical modelling scheme. As an illustration of the methodology we construct global FD and TD models of DV band source fields for 1997–2018. So far, the model uses only ground-based data, from 127 geomagnetic observatories. We show that the model accurately reproduces surface magnetic fields in both active and quiet times, including those at sites not used for model construction. This empirical model, especially with future enhancements, will have many applications: improved imaging of electrical conductivity, ionospheric studies and improved external field corrections for core and crustal studies.
  • Keywords:
  • Source:
    Geophysical Journal International, 225(2), 1086-1109
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1