The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Objective methods for thinning the frequency of reforecasts while meeting post-processing and model validation needs
-
2022
-
-
Source: Weather and Forecasting, 37(5), 727-748
Details:
-
Journal Title:Weather and Forecasting
-
Personal Author:
-
NOAA Program & Office:
-
Description:This paper utilizes statistical and statistical–dynamical methodologies to select, from the full observational record, a minimal subset of dates that would provide representative sampling of local precipitation distributions across the contiguous United States (CONUS). The CONUS region is characterized by a great diversity of precipitation-producing systems, mechanisms, and large-scale meteorological patterns (LSMPs), which can provide favorable environment for local precipitation extremes. This diversity is unlikely to be adequately captured in methodologies that rely on grossly reducing the dimensionality of the data—by representing it in terms of a few patterns evolving in time—and thus requires data thinning techniques based on high-dimensional dynamical or statistical data modeling. We have built a novel high-dimensional empirical model of temperature and precipitation capable of producing statistically accurate surrogate realizations of the observed 1979–99 (training period) evolution of these fields. This model also provides skillful hindcasts of precipitation over the 2000–20 (validation) period. We devised a subsampling strategy based on the relative entropy of the empirical model’s precipitation (ensemble) forecasts over CONUS and demonstrated that it generates a set of dates that captures a majority of high-impact precipitation events, while substantially reducing a heavy-precipitation bias inherent in an alternative methodology based on the direct identification of large precipitation events in the Global Ensemble Forecast System (GEFS), version 12 reforecasts. The impacts of data thinning on the accuracy of precipitation statistical postprocessing, as well as on the calibration and validation of the Hydrologic Ensemble Forecast Service (HEFS) reforecasts are yet to be established.
-
Source:Weather and Forecasting, 37(5), 727-748
-
DOI:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: