Analysis of topographic controls on depletion curves derived from airborne lidar snow depth data
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Analysis of topographic controls on depletion curves derived from airborne lidar snow depth data

Filetype[PDF-504.76 KB]



Details:

  • Journal Title:
    Hydrology Research: an international journal
  • Description:
    The annual consistency of spatial patterns of snow accumulation and melt suggests that the evolution of these patterns, known as depletion curves, is useful for estimating basin water content and runoff prediction. Theoretical snow cover depletion curves are used in models to parameterize fractional snow-covered area (fSCA) based on modeled estimates of snow accumulation and snowmelt. Directly measuring the spatio-temporal snow distribution, characterization of depletion curves, and understanding how they vary across mountainous landscapes was not possible until the recent U.S. National Aeronautics and Space Administration (NASA) Airborne Snow Observatory (ASO). Herein, for the first time, high-resolution spatio-temporal snow depth information from the ASO is used to derive observation-based snow cover depletion curves across physiographic gradients by estimating the slope of the fSCA–snow depth relationship (i.e. depletion slope). The depletion slope reveals important insights into snow processes as it is strongly related to snow depth variability (r2 = 0.58). Regression tree analysis between observed depletion slopes and physiography, particularly vegetation height and terrain roughness, displays clear nonlinear dynamics and explains 31% of the variance in depletion slope. This unique observation-based analysis of snow cover depletion curves has implications for energy and water flux calculations across many earth system models.
  • Source:
    Hydrology Research (2021) 52 (1): 253–265
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26