A New Approach to Homogenize Global Subdaily Radiosonde Temperature Data from 1958 to 2018
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A New Approach to Homogenize Global Subdaily Radiosonde Temperature Data from 1958 to 2018

Filetype[PDF-6.30 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Description:
    This study develops an innovative approach to homogenize discontinuities in both mean and variance in global subdaily radiosonde temperature data from 1958 to 2018. First, temperature natural variations and changes are estimated using reanalyses and removed from the radiosonde data to construct monthly and daily difference series. A penalized maximal F test and an improved Kolmogorov–Smirnov test are then applied to the monthly and daily difference series to detect spurious shifts in the mean and variance, respectively. About 60% (40%) of the changepoints appear in the mean (variance), and ~56% of them are confirmed by available metadata. The changepoints display a country-dependent pattern likely due to changes in national radiosonde networks. Mean segment length is 7.2 (14.6) years for the mean (variance)-based detection. A mean (quantile)-matching method using up to 5 years of data from two adjacent mean (variance)-based segments is used to adjust the earlier segments relative to the latest segment. The homogenized series is obtained by adding the two homogenized difference series back to the subtracted reference series. The homogenized data exhibit more spatially coherent trends and temporally consistent variations than the raw data, and lack the spurious tropospheric cooling over North China and Mongolia seen in several reanalyses and raw datasets. The homogenized data clearly show a warming maximum around 300 hPa over 30°S–30°N, consistent with model simulations, in contrast to the raw data. The results suggest that spurious changes are numerous and significant in the radiosonde records and our method can greatly improve their homogeneity.
  • Source:
    Journal of Climate, 34(3), 1163-1183
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26