i
Projected Seasonal Changes in Large-Scale Global Precipitation and Temperature Extremes Based on the CMIP5 Ensemble
-
2020
-
-
Source: Journal of Climate, 33(13), 5651-5671
Details:
-
Journal Title:Journal of Climate
-
Personal Author:
-
NOAA Program & Office:
-
Description:Over the past decades, significant changes in temperature and precipitation have been observed, including changes in the mean and extremes. It is critical to understand the trends in hydroclimatic extremes and how they may change in the future as they pose substantial threats to society through impacts on agricultural production, economic losses, and human casualties. In this study, we analyzed projected changes in the characteristics, including frequency, seasonal timing, and maximum spatial and temporal extent, as well as severity, of extreme temperature and precipitation events, using the severity–area–duration (SAD) method and based on a suite of 37 climate models archived in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Comparison between the CMIP5 model estimated extreme events and an observation-based dataset [Princeton Global Forcing (PGF)] indicates that climate models have moderate success in reproducing historical statistics of extreme events. Results from the twenty-first-century projections suggest that, on top of the rapid warming indicated by a significant increase in mean temperature, there is an overall wetting trend in the Northern Hemisphere with increasing wet extremes and decreasing dry extremes, whereas the Southern Hemisphere will have more intense wet extremes. The timing of extreme precipitation events will change at different spatial scales, with the largest change occurring in southern Asia. The probability of concurrent dry/hot and wet/hot extremes is projected to increase under both RCP4.5 and RCP8.5 scenarios, whereas little change is detected in the probability of concurrent dry/cold events and only a slight decrease of the joint probability of wet/cold extremes is expected in the future.
-
Keywords:
-
Source:Journal of Climate, 33(13), 5651-5671
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: