U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Climate reconstruction using data assimilation of water isotope ratios from ice cores

Supporting Files
File Language:


Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    JGR Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Water isotope data from ice cores, particularly δ18O, have long been used in paleoclimatology. Although δ18O has been primarily interpreted as a proxy for local air temperature, isotope-enabled climate models have established that there are many nonlocal and nontemperature-related climatic influences on isotopic signals at coring locations. Moreover, recent observational studies have linked ice core isotopes to nonlocal patterns of climate variability, particularly to midlatitude atmospheric circulation patterns and to variations in tropical climate. Therefore, paleoclimate reconstructions may better utilize ice core isotope proxies by combining them with isotope-enabled climate models. Here we employ a data assimilation-based technique that fuses isotopic proxy information with the dynamical constraints of climate models. Through several idealized and real proxy experiments we assess the spatial and temporal extent to which isotope records can reconstruct surface temperature, 500 hPa geopotential height, and precipitation. We find local reconstruction skill to be most robust across the reconstructions, particularly for temperature and geopotential height, as well as limited nonlocal skill in the tropics. These results are in agreement with long-held views that isotopes in ice cores have clear value as local climate proxies, particularly for temperature and atmospheric circulation. These results also show that in principle nonlocal climate information may also be inferred from ice cores. However, the spatial range of this information is nonuniform and depends on skillful modeling of the proxy data within the reconstruction process.
  • Keywords:
  • Source:
    JGR Atmospheres 122(3): 1545-1568
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:83af1c55c6d944d11305fb2362df61a091dff16d58512fd9de13631af7f19f11
  • Download URL:
  • File Type:
    Filetype[PDF - 24.67 MB ]
File Language:
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.