Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer

Filetype[PDF-9.17 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    The Cryosphere
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    In spring 2018, two firn cores (21 and 36 m in length) were extracted from the accumulation zone of Kaskawulsh Glacier, St. Elias Mountains, Yukon. The cores were analyzed for ice layer stratigraphy and density and compared against historical measurements made in 1964 and 2006. Deep meltwater percolation and refreezing events were evident in the cores, with a total ice content of 2.33±0.26 m in the 36 m core and liquid water discovered below a depth of 34.5 m. Together with the observed ice content, surface energy balance and firn modelling indicate that Kaskawulsh Glacier firn retained about 86 % of its meltwater in the years 2005–2017. For an average surface ablation of 0.38 m w.e. yr−1 over this period, an estimated 0.28 m w.e. yr−1 refroze in the firn, 0.05 m w.e. yr−1 was retained as liquid water, and 0.05 m w.e. yr−1 drained or ran off. The refrozen meltwater is associated with a surface lowering of 0.73±0.23 m between 2005 and 2017 (i.e., surface drawdown that has no associated mass loss). The firn has become denser and more ice-rich since the 1960s and contains a perennial firn aquifer (PFA), which may have developed over the past decade. This illustrates how firn may be evolving in response to climate change in the St. Elias Mountains, provides firn density information required for geodetic mass balance calculations, and is the first documented PFA in the Yukon–Alaska region.
  • Keywords:
  • Source:
    The Cryosphere, 15, 2021–2040
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1