The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Skill assessment of NCEP three-way coupled HWRF-HYCOM-WW3 modeling system: Hurricane Laura case study.
-
2022
-
-
Source: Weather and Forecasting, 37(8), 1309-1331
Details:
-
Journal Title:Weather and Forecasting
-
Personal Author:
-
NOAA Program & Office:
-
Description:In this research, we develop a three-way coupled prediction system to advance the realization of air–sea interaction processes. This study considers the sea-state-dependent momentum flux and nonlinear interactions between waves, winds, and ocean currents using the U.S. National Centers for Environmental Prediction’s operational Hurricane Weather Research and Forecasting (HWRF)-Hybrid Coordinate Ocean Model (HYCOM) coupled modeling system. Wave feedback is performed through the air–sea interaction module (ASIM) added to WAVEWATCH III (WW3), which employs the wave boundary layer to parameterize unresolved high-frequency tail spectra by using the mean flux profile constructed from the conservation of total momentum and wave energy. The atmospheric momentum flux is updated using the sea-state-dependent Charnock coefficient, wave-induced stress, and ocean surface currents before being passed to HYCOM. Wave coupling in HYCOM includes Coriolis–Stokes forcing to simulate wave–current interactions and to enhance mixing to account for Langmuir turbulence. The fully coupled system is tested for Hurricane Laura (2020). This paper examines the forecast skills of the individual component models by comparing simulations with observations. Without skill degradation of HYCOM and WW3, the three-way coupling method improves the track and intensity forecast skills by 5% each over those of HWRF-HYCOM coupling, and 27% and 17% over those of uncoupling, respectively. Importantly, this fully coupled system outperforms rapid intensification by reducing the intensification magnitude and matching the occurrence and duration. Overall, the forecast performance evaluated in the study establishes a baseline for the next-generation hurricane prediction system.
-
Keywords:
-
Source:Weather and Forecasting, 37(8), 1309-1331
-
DOI:
-
Document Type:
-
Rights Information:CC BY-NC-ND
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: