A screening-level human health risk assessment for microplastics and organic contaminants in near-shore marine environments in American Samoa
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


A screening-level human health risk assessment for microplastics and organic contaminants in near-shore marine environments in American Samoa

Filetype[PDF-1.69 MB]


  • Journal Title:
  • Description:
    Solid waste disposal is a growing concern among Pacific Island nations. With severe limitations in land area, in combination with the lack of reuse or recycling options, many near-shore marine ecosystems across Oceania are highly impacted by locally derived marine debris, including plastics, microplastics and associated chemical contaminants. In order to catalyze improved solid waste management and plastic use policies, the potential ecological and public health risks must be clearly identified and communicated. Using an ecological risk assessment framework, potential risks to marine ecosystems and human health are explored by quantifying microplastics and organic contaminants in 4 study sites located in Tutuila, American Samoa. Results of sampled near-shore marine waters, marine sediments and molluscs indicate that microplastics are unevenly distributed in the marine environment, with the highest concentrations detected in marine molluscs (e.g. average of 15 and 17 particles per organism, the majority of which were microfibers identified as polyethylene terephthalate). These invertebrates also have the highest environmental concentrations of organic contaminants, including phthalates, pesticides and PCBs. However, based on estimated rates of invertebrate consumption, the risk of adverse impacts to human health are likely to be low. Regardless, future studies are recommended to better understand the environmental partitioning of microplastics in dynamic near-shore marine environments, as well as the specific pathways and consequences of the physical and chemical impacts of microplastics on marine species populations and overall marine ecosystem health.
  • Source:
    Heliyon 8 (2022) e09101
  • Document Type:
  • Place as Subject:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26