Hidden Markov Models: Pitfalls and Opportunities in Ecology
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Hidden Markov Models: Pitfalls and Opportunities in Ecology

Filetype[PDF-1.29 MB]



Details:

  • Journal Title:
    Methods in Ecology and Evolution
  • Description:
    Hidden Markov models (HMMs) and their extensions are attractive methods for analysing ecological data where noisy, multivariate measurements are made of a hidden, ecological process, and where this hidden process is represented by a sequence of discrete states. Yet, as these models become more complex and challenging to understand, it is important to consider what pitfalls these methods have and what opportunities there are for future research to address these pitfalls.

    In this paper, we review five lesser known pitfalls one can encounter when using HMMs or their extensions to solve ecological problems: (a) violation of the snapshot property in continuous-time HMMs; (b) biased inference from hierarchical HMMs when applied to temporally misaligned processes; (c) sensitive inference from using random effects to partially pool across heterogeneous individuals; (d) computational burden when using HMMs to approximate models with continuous state spaces; and (e) difficulty linking the hidden process to space or environment.

    This review is for ecologists and ecological statisticians familiar with HMMs, but who may be less aware of the problems that arise in more specialised applications. We demonstrate how each pitfall arises, by simulation or example, and discuss why this pitfall is important to consider. Along with identifying the problems, we highlight potential research opportunities and offer ideas that may help alleviate these pitfalls.

    Each of the methods we review are solutions to current ecological research problems. We intend for this paper to heighten awareness of the pitfalls ecologists may encounter when applying these more advanced methods, but we also hope that by highlighting future research opportunities, we can inspire ecological statisticians to weaken these pitfalls and provide improved methods.

  • Source:
    Methods in Ecology and Evolution, 00, 1– 14
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26