Logarithmic velocity structure in the deep hypolimnetic waters of Lake Michigan
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Add terms to the query box

Query box

Help
Clear All
i

Logarithmic velocity structure in the deep hypolimnetic waters of Lake Michigan

Filetype[PDF-2.36 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Description:
    The characteristics of the bottom boundary layer are reported from a Lake Michigan field study carried out in deep hypolimnetic waters (55 m depth) during the stratified period (June–September 2012). The sandy substrate at the measurement site was densely covered with invasive quagga mussels (mean size: 1.6 cm; mean density: 10,000 mussels m−2). The measurements reveal a sluggish, compact bottom boundary layer, with flow speeds at 1 mab less than 5 cm s−1 for most of the period, and a dominance of subinertial energy. A downwelling event caused the largest currents observed during the deployment (10 cm s−1 at 1 mab) and a logarithmic layer thickness of 15 m. In spite of the weak flow, logarithmic profile fitting carried out on high-resolution, near-bed velocity profiles show consistent logarithmic structure (90% of profiles). Flow was dominated by subinertial energy but strong modified by near-inertial waves. Fitted drag coefficients and roughness values are urn:x-wiley:21699275:media:jgrc21583:jgrc21583-math-0001 = 0.004 and urn:x-wiley:21699275:media:jgrc21583:jgrc21583-math-0002 = 0.12 cm, respectively. These values increase with decreasing flow speed, but approach canonical values for 1 mab flow speeds exceeding 4 cm s−1. The estimated vertical extent of the logarithmic region was compact, with a mean value of 1.2 m and temporal variation that is reasonably described by Ekman scaling, 0.07 urn:x-wiley:21699275:media:jgrc21583:jgrc21583-math-0003 / urn:x-wiley:21699275:media:jgrc21583:jgrc21583-math-0004, and the estimated overall Ekman layer thickness was generally less than 10 m. Near-bed dissipation rates inferred from the law of the wall were 10−8−10−7 W kg−1 and turbulent diffusivities were 10−4−10−3 m2s−1.
  • Source:
    JGR Oceans 121(1): 949-965
  • Sea Grant Document Number:
    ILIN-R-16-010
  • Document Type:
  • Place as Subject:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.18