Detrital supply suppresses deforestation to maintain healthy kelp forest ecosystems
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Detrital supply suppresses deforestation to maintain healthy kelp forest ecosystems

Filetype[PDF-1.52 MB]



Details:

  • Journal Title:
    Ecology
  • Description:
    Herbivores can reach extraordinary abundances in many ecosystems. When herbivore abundance is high, heavy grazing can severely defoliate primary producers and, in some cases, even drive ecosystem to undergo regime shifts from a high productivity state to a denuded, low productivity state. While the phenomenon of herbivore-driven regime shifts is well-documented, we only partially understand the mechanisms underlying these events. Here, we combine herbivory experiments with 21 years of long-term monitoring data of kelp forest ecosystems to test the hypothesis that herbivores drive regime shifts when herbivory exceeds primary production. To test this hypothesis, we quantified how the foraging habits of an important group of marine herbivores— sea urchins— changes with increases in sea urchin biomass and triggers regime

    shifts to a foundation species— giant kelp (Macrocystis pyrifera). Using experiments, we quantified how the grazing capacity of urchins increases as urchin biomass increases, then we combined these estimates of urchin grazing capacity with estimates of kelp production to predict when and where urchin grazing capacity exceeded kelp production. When grazing capacity exceeded kelp production, sea urchins caused a 50-fold reduction in giant kelp biomass. Our findings support the hypothesis that the balance between herbivory and production underlies herbivore-driven regime shifts in southern California kelp forests and provides insight into when and where urchins are likely to force regime shifts in kelp forest ecosystems.

  • Source:
    Ecology 103( 5): e3673
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26