Progress and Developments of Downburst Prediction Applications of GOES
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Progress and Developments of Downburst Prediction Applications of GOES

Filetype[PDF-3.74 MB]


  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • Description:
    The National Environmental Satellite, Data, and Information Service (NESDIS) Center for Satellite Applications and Research (STAR) has developed and evaluated a suite of products that assess convective storm–generated downburst potential derived from Geostationary Operational Environmental Satellite-13–15 (GOES-13–15). The existing suite of downburst prediction algorithms employs the GOES sounder to calculate risk based on conceptual models of favorable environmental thermodynamic profiles for downburst occurrence. A diagnostic nowcasting product, the Microburst Windspeed Potential Index (MWPI), is designed to identify attributes of a favorable downburst environment: 1) the presence of large CAPE and 2) the presence of a surface-based or elevated mixed layer with a large temperature lapse rate. This paper provides an updated assessment of the MWPI algorithm, presents case studies demonstrating effective operational use of the MWPI product, and presents validation results for the Great Plains and mid-Atlantic coastal region of the United States. MWPI data were collected for downburst events that occurred during the convective seasons of 2007–13 and were validated against surface observations of convective wind gusts as recorded by wind sensors in high quality mesonetworks over the southern Great Plains and the Chesapeake Bay region. Favorable validation results include a correlation greater than 0.6 and low mean error [<0.1 knot (kt; where 1 kt = 0.51 m s−1)] between MWPI values and measured confirmed downburst wind speeds over contrasting climate regions of the continental United States. Case studies over the mid-Atlantic region and northern Florida highlight the adaptability of the MWPI algorithm to severe convective storm forecasting and warning operations.
  • Source:
    Weather and Forecasting, 30(5), 1182-1200
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at

Version 3.26