The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Isotopic Approaches To Estimating The Contribution Of Heterotrophic Sources To Hawaiian Corals
-
2021
-
-
Source: Limnol Oceanogr, 66: 2393-2407
Details:
-
Journal Title:Limnology and Oceanography
-
Personal Author:
-
NOAA Program & Office:
-
Sea Grant Program:
-
Description:Corals obtain nutrition from the photosynthetic products of their algal endosymbionts and the ingestion of organic material and zooplankton from the water column. Here, we use stable carbon (δ13C) and nitrogen (δ15N) isotopes to assess the proportionate contribution of photoautotrophic and heterotrophic sources to seven Hawaiian coral species collected from six locations around the island of O‘ahu, Hawaiʻi. We analyzed the δ13C and δ15N of coral tissues and their algal endosymbionts, as well as that of dissolved inorganic matter, particulate organic matter, and zooplankton from each site. Estimates of heterotrophic contribution varied among coral species and sites. Bayesian mixing models revealed that heterotrophic sources (particulate organic material and zooplankton) contributed the most to Pocillopora acuta and Montipora patula coral tissues at 49.3% and 48.0%, respectively, and the least to Porites lobata at 28.7%, on average. Estimates of heterotrophic contribution based on the difference between δ13C of the host and algal endosymbiont (δ13Ch–e) and isotopic niche overlap often differed, while estimates based on δ15Nh–e were slightly more aligned with the estimates produced using Bayesian mixing models. These findings suggest that the utility of each approach may vary with coral health status, regions, and coral species. Overall, we find that the mean heterotrophic contribution to Hawaiian coral tissues ranges from 20% to 50%, suggesting a variety of trophic strategies. However, these findings did not always match past direct measurements of heterotrophic feeding, indicating that heterotrophically acquired nutrition does not necessarily get incorporated into tissues but can be respired or exuded in mucus.
-
Keywords:
-
Source:Limnol Oceanogr, 66: 2393-2407
-
DOI:
-
Document Type:
-
Funding:
-
Place as Subject:
-
Rights Information:CC BY-NC-ND
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: