Limiting factors for queen conch (Lobatus gigas) reproduction: A simulation-based evaluation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Limiting factors for queen conch (Lobatus gigas) reproduction: A simulation-based evaluation

Filetype[PDF-2.79 MB]


  • Journal Title:
    PLOS One
  • Description:
    Queen conch are among the most economically, socially, and culturally important fishery resources in the Caribbean. Despite a multitude of fisheries management measures enacted across the region, populations are depleted and failing to recover. It is believed that queen conch are highly susceptible to depensatory processes, impacting reproductive success and contributing to the lack of recovery. We developed a model of reproductive dynamics to evaluate how variations in biological factors such as population density, movement speeds, rest periods between mating events, scent tracking, visual perception of conspecifics, sexual facilitation, and barriers to movement affect reproductive success and overall reproductive output. We compared simulation results to empirical observations of mating and spawning frequencies from conch populations in the central Bahamas and Florida Keys. Our results confirm that low probability of mate finding associated with decreased population density is the primary driver behind observed breeding behavior in the field, but is insufficient to explain observed trends. Specifically, sexual facilitation coupled with differences in movement speeds and ability to perceive conspecifics may explain the observed lack of mating at low densities and differences between mating frequencies in the central Bahamas and Florida Keys, respectively. Our simulations suggest that effective management strategies for queen conch should aim to protect high-density reproductive aggregations and critical breeding habitats.
  • Source:
    PLoS ONE 17(3): e0251219
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at

Version 3.26