Depuration System Flushing Rate Affects Geosmin Removal From Market-Size Atlantic Salmon Salmo Salar
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Depuration System Flushing Rate Affects Geosmin Removal From Market-Size Atlantic Salmon Salmo Salar

Filetype[PDF-1.46 MB]



Details:

  • Journal Title:
    Aquaculture Engineering
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    Common off-flavor compounds including geosmin (GSM) bioaccumulate in fish cultured in recirculating aquaculture systems (RAS) resulting in unpalatable fillets that are objectional to consumers. Most RAS facilities relocate fish from grow-out tanks to separate depuration systems with increased water flushing to remediate pre-harvest off-flavors, but certain aspects of this procedure have not been optimized including characterization of water exchange rates that effectively diminish off-flavor. To this end, a study was carried out to evaluate the effects of flushing rate and associated depuration system hydraulic retention time (HRT) on GSM removal from Atlantic salmon Salmo salar originally produced in a semi-commercial scale freshwater RAS. Twenty-six fish (5−7 kg each) were stocked into twelve replicate depuration systems operated with system HRTs of 2.4, 4.6, and 11.3-h, respectively (N = 4). Geosmin was assessed at intervals in system water and fish flesh over a 10-day feed withholding period. Waterborne GSM concentration was affected by flushing rate and associated system HRT (P <  0.05). Depuration systems operated with an 11.3-h HRT had greater waterborne GSM levels at 3, 6, and 10 days post-stocking compared to 2.4 and 4.6-h HRT. A similar trend was generally reflected in salmon flesh. Residual GSM levels were successively higher in fillets on Day 6 from depuration systems with increasingly longer HRT. Geosmin levels were greatest in salmon flesh from the 11.3-h HRT treatment on Day 10, but fillet GSM between the 2.4 and 4.6-h HRT was similar. This research indicates that lowest residual GSM is achieved in water and Atlantic salmon flesh in depuration systems with increased flushing and shorter HRT, i.e., 2.4–4.6-h under conditions of this study. Selection of optimal flushing rate to remediate off-flavor from RAS-produced Atlantic salmon may also be dictated by water and energy use metrics and site-specific water availability among other factors.
  • Keywords:
  • Source:
    Aquaculture Engineering 90: 102104, 2020
  • DOI:
  • Sea Grant Document Number:
    WISCU-R-20-005
  • Document Type:
  • Funding:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1