Tidal And Storm Impacts On Hydrodynamics And Sediment Dynamics In An Energetic Ebb Tidal Delta
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Tidal And Storm Impacts On Hydrodynamics And Sediment Dynamics In An Energetic Ebb Tidal Delta

Filetype[PDF-2.72 MB]



Details:

  • Journal Title:
    Journal of Marine Science and Engineering
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    Bottom-mounted instrumentation was deployed at two sites on a large sandy shoal of an ebb tidal delta offshore of the Port Royal Sound of South Carolina of USA to collect hydrodynamics and sediment dynamics data. One site (“borrow site”) was 2 km offshore in a dredge pit for nearby beach nourishment and the other site (“reference site”) was 10 km offshore. In situ time-series data were collected during two periods after the dredging: 15 March–12 June (spring) and 18 August–18 November (fall) of 2012. Data at the reference site indicated active migrating bedforms from centimeters to decimeters tall, and sediment concentrations were highly associated with semidiurnal and fortnightly tidal cycles. In the fall deployment, waves at the reference site were higher than those at the shallow borrow site. Both Tropical Storm Beryl and Hurricane Sandy formed high waves and strong currents but did not generate the greatest sediment fluxes. The two sites were at different depths and distances offshore, and waves contributed more to sediment mobility at the reference site whereas tidal forcing was the key controlling factor at the borrow site. This study provides valuable datasets for the selection of sites, prediction of pit infilling, and the modeling of storm impact in future beach nourishment and coastal restoration projects.
  • Keywords:
  • Source:
    J. Mar. Sci. Eng. 2020, 8(10), 810
  • DOI:
  • Sea Grant Document Number:
    SCSGC-R-20-007
  • Document Type:
  • Funding:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1