Tidal and Storm Impacts on Hydrodynamics and Sediment Dynamics in an Energetic Ebb Tidal Delta
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Tidal and Storm Impacts on Hydrodynamics and Sediment Dynamics in an Energetic Ebb Tidal Delta

Filetype[PDF-2.72 MB]



Details:

  • Journal Title:
    Journal of Marine Science and Engineering
  • Description:
    Bottom-mounted instrumentation was deployed at two sites on a large sandy shoal of an ebb tidal delta offshore of the Port Royal Sound of South Carolina of USA to collect hydrodynamics and sediment dynamics data. One site (“borrow site”) was 2 km offshore in a dredge pit for nearby beach nourishment and the other site (“reference site”) was 10 km offshore. In situ time-series data were collected during two periods after the dredging: 15 March–12 June (spring) and 18 August–18 November (fall) of 2012. Data at the reference site indicated active migrating bedforms from centimeters to decimeters tall, and sediment concentrations were highly associated with semidiurnal and fortnightly tidal cycles. In the fall deployment, waves at the reference site were higher than those at the shallow borrow site. Both Tropical Storm Beryl and Hurricane Sandy formed high waves and strong currents but did not generate the greatest sediment fluxes. The two sites were at different depths and distances offshore, and waves contributed more to sediment mobility at the reference site whereas tidal forcing was the key controlling factor at the borrow site. This study provides valuable datasets for the selection of sites, prediction of pit infilling, and the modeling of storm impact in future beach nourishment and coastal restoration projects.
  • Source:
    J. Mar. Sci. Eng. 2020, 8(10), 810
  • Sea Grant Document Number:
    SCSGC-R-20-007
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26