i
Austral summer Southern Africa precipitation extremes forced by the El Niño-Southern oscillation and the subtropical Indian Ocean dipole
-
2018
-
Source: Clim Dyn 50, 3219–3236 (2018)
Details:
-
Journal Title:Climate Dynamics
-
Personal Author:
-
NOAA Program & Office:
-
Description:Southern Africa, defined here as the African continent south of 15°S latitude, is prone to seasonal precipitation extremes during December–March that have profound effects on large populations of people. The intensity of summertime precipitation extremes can be remarkable, with wet seasons experiencing up to a doubling of the seasonal average precipitation. Recognizing the importance of understanding the causes of Southern Africa precipitation extremes for the purpose of improved early warning, an 80-member ensemble of atmospheric model simulations forced by observed time-varying boundary conditions during 1979–2016 is used to examine the mechanisms by which December–March precipitation extremes are delivered to Southern Africa and whether the El Niño-Southern Oscillation (ENSO) and the Subtropical Indian Ocean Dipole (SIOD) modify the probabilities of extreme seasonal precipitation occurrences. The model simulations reveal that the synchronous ENSO and SIOD phasing conditions the probability of December–March extreme precipitation occurrences. The probability of extreme wet seasons is greatly increased by La Niña, especially so when combined with a positive SIOD, and greatly decreased by El Niño regardless of SIOD phasing. By contrast, the probability of extreme dry seasons is increased by El Niño and is decreased by La Niña. The mechanisms by which extreme precipitation are delivered are the same regardless of ENSO and SIOD phase. Extreme wet seasons are a result of an anomalous lower tropospheric cyclone over Southern Africa that increases convergence and moisture fluxes into the region while extreme dry seasons are a result of an anomalous lower tropospheric anticyclone that decreases convergence and moisture fluxes into the region.
-
Keywords:
-
Source:Clim Dyn 50, 3219–3236 (2018)
-
DOI:
-
Document Type:
-
Place as Subject:
-
Rights Information:Accepted Manuscript
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: