Tissue localization of piscidin host-defense peptides during striped bass (Morone saxatilis) development
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Tissue localization of piscidin host-defense peptides during striped bass (Morone saxatilis) development

Filetype[PDF-2.53 MB]



Details:

  • Journal Title:
    Fish & Shellfish Immunology
  • Description:
    Infectious diseases are a major cause of larval mortality in finfish aquaculture. Understanding ontogeny of the fish immune system and thus developmental timing of protective immune tissues and cells, may help to decrease serious losses of larval fishes when they are particularly vulnerable to infection. One component of the innate immune system of fishes is the host-defense peptides, which include the piscidins. Piscidins are small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and protozoan pathogens. We describe for the first time the cellular and tissue localization of three different piscidins (1, 3, and 4) during striped bass (Morone saxatilis) larval ontogeny using immunofluorescent histochemistry. From 16 days post hatch to 12 months of age, piscidin staining was observed in cells of the epithelial tissues of gill, digestive tract, and skin, mainly in mast cells. Staining was also seen in presumptive hematopoietic cells in the head kidney. The three piscidins showed variable cellular and tissue staining patterns, possibly relating to differences in tissue susceptibility or pathogen specificity. This furthers our observation that the piscidins are not a monolithic family of antimicrobials, but that different AMPs have different (more specialized) functions. Furthermore, no immunofluorescent staining of piscidins was observed in post-vitellogenic oocytes, embryos, or larvae from hatch to 14 days post hatch, indicating that this critical component of the innate immune system is inactive in pre-hatch and young larval striped bass.
  • Source:
    Fish & Shellfish Immunology 61: 173-180
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26