Quantifying Processes Governing Nutrient Concentrations in a Coastal Aquifer via Principal Component Analysis
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Quantifying Processes Governing Nutrient Concentrations in a Coastal Aquifer via Principal Component Analysis

Filetype[PDF-4.47 MB]



Details:

  • Journal Title:
    Hydrology
  • NOAA Program & Office:
  • Description:
    Submarine groundwater discharge (SGD) is an important source of nutrients to coastal ecosystems. The flux of nutrients associated with SGD is governed by the volumetric discharge of groundwater and the concentrations of nutrients in groundwater within the coastal aquifer. Nutrient concentrations in the coastal aquifer, in turn, are controlled by processes such as mixing, precipitation, adsorption-desorption, the decay of organic material, and nitrogen-fixation/denitrification. In this study, Principal Component Analysis (PCA) was applied to groundwater and ocean water nutrient concentration data from Monterey Bay, California, to identify and rank processes controlling coastal aquifer nutrient concentrations. Mixing with seawater, denitrification, the decay of organic matter, and desorption of phosphate were determined to be the three most important processes accounting for 39%, 19%, 14%, and 12% of the variability, respectively. This study shows how PCA can be applied to SGD studies to quantify the relative contribution of different processes controlling nutrient concentrations in coastal aquifers.
  • Source:
    Hydrology 2018, 5, 15
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26