U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Atmospheric observation-based estimation of fossil fuel CO2 emissions from regions of central and southern California



Details

  • Journal Title:
    Science of the Total Environment
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Combustion of fossil fuel is the dominant source of greenhouse gas emissions to the atmosphere in California. Here, we describe radiocarbon (14CO2) measurements and atmospheric inverse modeling to estimate fossil fuel CO2 (ffCO2) emissions for 2009–2012 from a site in central California, and for June 2013–May 2014 from two sites in southern California. A priori predicted ffCO2 mixing ratios are computed based on regional atmospheric transport model (WRF-STILT) footprints and an hourly ffCO2 prior emission map (Vulcan 2.2). Regional inversions using observations from the central California site suggest that emissions from the San Francisco Bay Area (SFBA) are higher in winter and lower in summer. Taking all years together, the average of a total of fifteen 3-month inversions from 2009 to 2012 suggests ffCO2 emissions from SFBA were within 6 ± 35% of the a priori estimate for that region, where posterior emission uncertainties are reported as 95% confidence intervals. Results for four 3-month inversions using measurements in Los Angeles South Coast Air Basin (SoCAB) during June 2013–May 2014 suggest that emissions in SoCAB are within 13 ± 28% of the a priori estimate for that region, with marginal detection of any seasonality. While emissions from the SFBA and SoCAB urban regions (containing ~50% of prior emissions from California) are constrained by the observations, emissions from the remaining regions are less constrained, suggesting that additional observations will be valuable to more accurately estimate total ffCO2 emissions from California as a whole.
  • Keywords:
  • Source:
    Science of the Total Environment, 664: 381-391
  • DOI:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:c307e5101209fe86b535d2974e1329ef7b68892da54c2fe12b3bbffd8f36f741e275cc06ef9868ba75eaf812820800f4c53d165e1c88b7796c95e4eb96293157
  • Download URL:
  • File Type:
    Filetype[PDF - 1.08 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.