U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Enhanced Energy Dissipation in the Equatorial Pycnocline by Wind-Induced Internal Wave Activity



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Numerical experiments show that in a zonally symmetric model of a tropical ocean forced only by transient winds both inertia-gravity wave activity and the energy dissipation rate have a pronounced maximum in the pycnocline close to the equator regardless of the latitudinal distribution of the energy input into the ocean's mixed layer. We consider a number of factors that determine the spatial distribution of mixing and find that equatorial enhancement is due to a combination of three factors: a stronger superinertial component of the wind forcing close to the equator, wave action convergence at turning latitudes for equatorially trapped waves, and nonlinear wave-wave interactions between equatorially trapped waves. The most important factor is wave action convergence at turning latitudes.
  • Keywords:
  • Source:
    Journal of Geophysical Research: Oceans, 124, 6200– 6217
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:c671c21a0343e218487d46119300fc8c6341d51d6954cd29411edcb93a460630
  • Download URL:
  • File Type:
    Filetype[PDF - 11.19 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.