The formation of elevated refractive layers in the oceanic boundary layer by offshore modificaion of land air
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The formation of elevated refractive layers in the oceanic boundary layer by offshore modificaion of land air

Filetype[PDF-89.74 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Personal Author:
  • Corporate Authors:
  • NOAA Program & Office:
  • Description:
    The usual picture of the development of temperature and humidity boundary layers in a land air mass that moves offshore is shown to be very wrong under one type of Foehn condition in southern California, and it is probable that similar conditions can prevail in widespread areas around the globe, notably the Mediterranean Sea and the monsoonal regions of the Near East and Southeast Asia. A formalism is developed for analyzing the modification that seems to represent the observations satisfactorily, and graphical solutions for radio and optical ducting are given. It is shown that offshore modification can lead to elevated layers rather than surface based layers, and the height of the layer base is theoretically predicted. Values of evaporation and heat flux into such an air mass are calculated and the distance offshore at which dew point depression becomes zero is predicted. A method for measuring the downward heat flux in elevated inversion layers is described and results are given.
  • Keywords:
  • Series:
  • Document Type:
  • License:
  • Rights Information:
    CC0 Public Domain
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1