The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather
-
2017
-
-
Source: Bulletin of the American Meteorological Society, 98(10), 2073-2090
Details:
-
Journal Title:Bulletin of the American Meteorological Society
-
Personal Author:
-
NOAA Program & Office:
-
Description:High-impact weather events, such as severe thunderstorms, tornadoes, and hurricanes, cause significant disruptions to infrastructure, property loss, and even fatalities. High-impact events can also positively impact society, such as the impact on savings through renewable energy. Prediction of these events has improved substantially with greater observational capabilities, increased computing power, and better model physics, but there is still significant room for improvement. Artificial intelligence (AI) and data science technologies, specifically machine learning and data mining, bridge the gap between numerical model prediction and real-time guidance by improving accuracy. AI techniques also extract otherwise unavailable information from forecast models by fusing model output with observations to provide additional decision support for forecasters and users. In this work, we demonstrate that applying AI techniques along with a physical understanding of the environment can significantly improve the prediction skill for multiple types of high-impact weather. The AI approach is also a contribution to the growing field of computational sustainability. The authors specifically discuss the prediction of storm duration, severe wind, severe hail, precipitation classification, forecasting for renewable energy, and aviation turbulence. They also discuss how AI techniques can process “big data,” provide insights into high-impact weather phenomena, and improve our understanding of high-impact weather.
-
Keywords:
-
Source:Bulletin of the American Meteorological Society, 98(10), 2073-2090
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:CC BY
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: