Testing for differences between two distributions in the presence of serial correlation using the Kolmogorov–Smirnov and Kuiper's tests
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Testing for differences between two distributions in the presence of serial correlation using the Kolmogorov–Smirnov and Kuiper's tests

Filetype[PDF-994.61 KB]



Details:

  • Journal Title:
    International Journal of Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Testing for differences between two states is a staple of climate research, for example, applying a Student's t test to test for the differences in means. A more general approach is to test for differences in the entire distributions. Increasingly, this latter approach is being used in the context of climate change research where some societal impacts may be more sensitive to changes further from the centre of the distribution. The Kolmogorov–Smirnov (KS) test, probably the most widely-used method in distributional testing, along with the closely related, but lesser known Kuiper's (KU) test are examined here. These, like most common statistical tests, assume that the data to which they are applied consist of independent observations. Unfortunately, commonly used data such as daily time series of temperature typically violate this assumption due to day-to-day autocorrelation. This work explores the consequences of this. Three variants of the KS and KU tests are explored: the traditional approach ignoring autocorrelation, use of an ‘effective sample size’ based on the lag-1 autocorrelation, and Monte Carlo simulations employing a first order autoregressive model appropriate to a variety of data commonly used in climate science. Results indicate that large errors in inferences are possible when the temporal coherence is ignored. The guidance and materials provided here can be used to anticipate the magnitude of the errors. Bias caused by the errors can be mitigated via easy to use ‘look-up’ tables or more broadly through application of polynomial coefficients fit to the simulation results.
  • Keywords:
  • Source:
    International Journal of Climatology
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1