The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
A New Method to Diagnose Cyclone–Cyclone Interaction and Its Influences on Precipitation
-
2019
-
-
Source: Journal of Applied Meteorology and Climatology, 58(8), 1821-1851
Details:
-
Journal Title:Journal of Applied Meteorology and Climatology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Unlike the classical point vortex model, a new method is developed to extract flows induced not only by vorticity but also by divergence in a well-defined vortex core area of a cyclone. This new method is applied to diagnosing the interactions of three midlatitude cyclones (called A, B, and C) that account for a missed summer severe rainfall forecast, in which the daily precipitation predicted by the Canadian operational model is an order of magnitude smaller than the rain gauge and radar measurements. In this event, cyclone B, responsible for the severe rainfall occurrence, was advected largely by flows induced by two neighboring cyclones: A and C to the west and east, respectively. This work attempts to assess whether and to what degree the vertical tilt of the observed cyclone versus that of the forecast cyclone B is caused by advections of the environmental flows (including A- and C-induced flows) at 500 and 1000 hPa. Results show that the observed cyclone B was advected mainly by the cyclone A–induced flow at 500 hPa into a vertically tilted structure that was northwestward against the vertical shear of the environmental flow and thus favorable for upward motion and cyclone intensification around the time of severe rainfall. However, the forecast cyclone B was advected largely by the cyclone A–induced flow at 500 hPa and the cyclone C–induced flow at 1000 hPa into an increasingly northward-tilted structure that was along the vertical shear of the environmental flow and thus unfavorable for upward motion and cyclone intensification, leading to the missed forecast of severe rainfall. Suggestions are made for future improvements of model forecasts.
-
Keywords:
-
Source:Journal of Applied Meteorology and Climatology, 58(8), 1821-1851
-
DOI:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: