The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Evolution of WRF-HAILCAST during the 2014–16 NOAA/Hazardous Weather Testbed Spring Forecasting Experiments
-
2019
-
-
Source: Weather and Forecasting, 34(1), 61-79
Details:
-
Journal Title:Weather and Forecasting
-
Personal Author:
-
NOAA Program & Office:
-
Description:Four different versions of the HAILCAST hail model have been tested as part of the 2014–16 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiments. HAILCAST was run as part of the National Severe Storms Laboratory (NSSL) WRF Ensemble during 2014–16 and the Community Leveraged Unified Ensemble (CLUE) in 2016. Objective verification using the Multi-Radar Multi-Sensor maximum expected size of hail (MRMS MESH) product was conducted using both object-based and neighborhood grid-based verification. Subjective verification and feedback was provided by HWT participants. Hourly maximum storm surrogate fields at a variety of thresholds and Storm Prediction Center (SPC) convective outlooks were also evaluated for comparison. HAILCAST was found to improve with each version due to feedback from the 2014–16 HWTs. The 2016 version of HAILCAST was equivalent to or exceeded the skill of the tested storm surrogates across a variety of thresholds. The post-2016 version of HAILCAST was found to improve 50-mm hail forecasts through object-based verification, but 25-mm hail forecasting ability declined as measured through neighborhood grid-based verification. The skill of the storm surrogate fields varied widely as the threshold values used to determine hail size were varied. HAILCAST was found not to require such tuning, as it produced consistent results even when used across different model configurations and horizontal grid spacings. Additionally, different storm surrogate fields performed at varying levels of skill when forecasting 25- versus 50-mm hail, hinting at the different convective modes typically associated with small versus large sizes of hail. HAILCAST was able to match results relatively consistently with the best-performing storm surrogate field across multiple hail size thresholds.
-
Keywords:
-
Source:Weather and Forecasting, 34(1), 61-79
-
DOI:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: