The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Impact of MPEX Upsonde Observations on Ensemble Analyses and Forecasts of the 31 May 2013 Convective Event over Oklahoma
-
2016
-
Source: Monthly Weather Review, 144(8), 2889-2913
Details:
-
Journal Title:Monthly Weather Review
-
Personal Author:
-
NOAA Program & Office:
-
Description:This study examines the impact of assimilating three radiosonde profiles obtained from ground-based mobile systems during the Mesoscale Predictability Experiment (MPEX) on analyses and convection-permitting model forecasts of the 31 May 2013 convective event over Oklahoma. These radiosonde profiles (in addition to standard observations) are assimilated into a 36-member mesoscale ensemble using an ensemble Kalman filter (EnKF) before embedding a convection-permitting (3 km) grid and running a full ensemble of 9-h forecasts. This set of 3-km forecasts is compared to a control run that does not assimilate the MPEX soundings. The analysis of low- to midlevel moisture is impacted the most by the assimilation, but coherent mesoscale differences in temperature and wind are also seen, primarily downstream of the location of the soundings. The ensemble of forecasts of convection on the 3-km grid are improved the most in the first three hours of the forecast in a region where the analyzed position of low-level frontal convergence and midlevel moisture was improved on the mesoscale grid. Later forecasts of the upscale growth of intense convection over central Oklahoma are improved somewhat, but larger ensemble spread lowers confidence in the significance of the improvements. Changes in the horizontal localization radius from the standard value applied to the MPEX sounding assimilation alters the specific times that the forecasts are improved in the first three hours of the forecasts, while changes to the vertical localization radius and specified temperature and wind observation error result in little to no improvements in the forecasts.
-
Keywords:
-
Source:Monthly Weather Review, 144(8), 2889-2913
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: