i
Storm-Scale Data Assimilation and Ensemble Forecasting with the NSSL Experimental Warn-on-Forecast System. Part I: Radar Data Experiments
-
2015
-
-
Source: Weather and Forecasting, 30(6), 1795-1817
Details:
-
Journal Title:Weather and Forecasting
-
Personal Author:
-
NOAA Program & Office:
-
Description:This first part of a two-part study on storm-scale radar and satellite data assimilation provides an overview of a multicase study conducted as part of the NOAA Warn-on-Forecast (WoF) project. The NSSL Experimental WoF System for ensembles (NEWS-e) is used to produce storm-scale analyses and forecasts of six diverse severe weather events from spring 2013 and 2014. In this study, only Doppler reflectivity and radial velocity observations (and, when available, surface mesonet data) are assimilated into a 36-member, storm-scale ensemble using an ensemble Kalman filter (EnKF) approach. A series of 1-h ensemble forecasts are then initialized from storm-scale analyses during the 1-h period preceding the onset of storm reports. Of particular interest is the ability of these 0–1-h ensemble forecasts to reproduce the low-level rotational characteristics of supercell thunderstorms, as well as other convective hazards. For the tornado-producing thunderstorms considered in this study, ensemble probabilistic forecasts of low-level rotation generally indicated a rotating thunderstorm approximately 30 min before the time of first observed tornado. Displacement errors (often to the north of tornado-affected areas) associated with vorticity swaths were greatest in those forecasts launched 30–60 min before the time of first tornado. Similar forecasts were produced for a tornadic mesovortex along the leading edge of a bow echo and, again, highlighted a well-defined vorticity swath as much as 30 min prior to the first tornado.
-
Keywords:
-
Source:Weather and Forecasting, 30(6), 1795-1817
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: