The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
The U-Tube: An Improved Aspirated Temperature System for Mobile Meteorological Observations, Especially in Severe Weather
-
2021
-
Source: Journal of Atmospheric and Oceanic Technology, 38(9), 1477-1489
Details:
-
Journal Title:Journal of Atmospheric and Oceanic Technology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Obtaining quality air temperature measurements in complex mesoscale environments, such as thunderstorms or frontal zones, is problematic and is particularly challenging from a moving platform. For some time, mobile weather platforms known as mobile mesonets (MMs) have used custom aspirated temperature shields. The original design was known as the “J-tube,” which addresses some but not all of the unique problems associated with mobile temperature measurements. For VORTEX2 2009, a second, well-documented shield, the R.M. Young (RMY) 43408, was included but was also found to have certain shortcomings in some severe weather environments. Between the end of VORTEX2 2009 and the start of VORTEX2 2010, a third and new shield called the “U-tube” was designed, tested, and installed. Reported here are the results of efforts to better characterize the J-Tube, RMY 43408, and U-tube. Several tests designed to isolate key aspects of a radiation shield’s performance, such as performance in rain, high solar radiation, varying wind conditions, and general response time, were completed. A period of intercomparison among the three shields during the 2010 season of VORTEX2 is also used to highlight each shield being used in “real world” conditions. Results indicate that the U-tube has several significant advantages over the J-tube and 43408 in terms of aspiration rate, sampling efficiency, performance during rain, variable winds, and high solar radiation periods, as well as response time. Given these results, the U-tube should be utilized for mobile observations going forward.
-
Keywords:
-
Source:Journal of Atmospheric and Oceanic Technology, 38(9), 1477-1489
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: