Quantifying thermal exposure for migratory riverine species: Phenology of Chinook salmon populations predicts thermal stress
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Quantifying thermal exposure for migratory riverine species: Phenology of Chinook salmon populations predicts thermal stress

Filetype[PDF-2.19 MB]


  • Journal Title:
    Global Change Biology
  • Description:
    Migratory species are particularly vulnerable to climate change because habitat throughout their entire migration cycle must be suitable for the species to persist. For migratory species in rivers, predicting climate change impacts is especially difficult because there is a lack of spatially continuous and seasonally varying stream temperature data, habitat conditions can vary for an individual throughout its life cycle, and vulnerability can vary by life stage and season. To predict thermal impacts on migratory riverine populations, we first expanded a spatial stream network model to predict mean monthly temperature for 465,775 river km in the western U.S., and then applied simple yet plausible future stream temperature change scenarios. We then joined stream temperature predictions to 44,396 spatial observations and life-stage-specific phenology (timing) for 26 ecotypes (i.e., geographically distinct population groups expressing one of the four distinct seasonal migration patterns) of Chinook salmon (Oncorhynchus tshawytscha), a phenotypically diverse anadromous salmonid that is ecologically and economically important but declining throughout its range. Thermal stress, assessed for each life stage and ecotype based on federal criteria, was influenced by migration timing rather than latitude, elevation, or migration distance such that sympatric ecotypes often showed differential thermal exposure. Early-migration phenotypes were especially vulnerable due to prolonged residency in inland streams during the summer. We evaluated the thermal suitability of 31,699 stream km which are currently blocked by dams to explore reintroduction above dams as an option to mitigate the negative effects of our warmer stream temperature scenarios. Our results showed that negative impacts of stream temperature warming can be offset for almost all ecotypes if formerly occupied habitat above dams is made available. Our approach of combining spatial distribution and phenology data with spatially explicit and temporally explicit temperature predictions enables researchers to examine thermal exposure of migrating populations that use seasonally varying habitats.
  • Keywords:
  • Source:
    Global Change Biology, 27(3), 536-549
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26