The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Applications of Uncrewed Aerial Vehicles (UAVs) in Winter Precipitation-Type Forecasts
-
2021
-
Source: Journal of Applied Meteorology and Climatology, 60(3), 361-375
Details:
-
Journal Title:Journal of Applied Meteorology and Climatology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Temperature and humidity profiles in the lowest 3 km of the atmosphere provide crucial information in determining the precipitation type, which aids forecasters in relaying winter-weather risks. In response to the challenges associated with forecasting mixed-phase environments, this study employs uncrewed aerial vehicles (UAVs) to explore the efficacy of high-resolution temporal and vertical measurements in winter-weather environments. On 19 February 2019, boundary layer measurements of an Oklahoma winter storm were collected by a UAV and radiosondes. UAV observations show a pronounced surface-based subfreezing layer that corresponds to observed ice pellets at the surface. This is in contrast to the High-Resolution Rapid Refresh (HRRR) model analyses, which show a subfreezing layer near the surface that is 3°C warmer than both the UAV and radiosonde observations. Using a spectral-bin-microphysics algorithm designed to provide hydrometeor-phase diagnosis throughout the vertical column, it was found that UAV measurements can improve discrimination between hydrometer types in environments near 0°C. A numerical-modeling study of the same winter-weather event illustrates the potential benefit of vertically sampling a mixed-phase environment at multiple mesonet sites and highlights future scientific and operational questions to be addressed by the UAV community.
-
Keywords:
-
Source:Journal of Applied Meteorology and Climatology, 60(3), 361-375
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: