Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar

Filetype[PDF-18.23 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    IEEE Transactions on Geoscience and Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The rotating phased array radar (RPAR) is an architecture that could improve the capabilities of the current weather surveillance radar--1988 Doppler (WSR-88D) operational network and is likely to be more affordable than other candidate PAR architectures. However, continuous antenna rotation coupled with the need to perform coherent processing of multiple samples results in a degraded effective beamwidth (referred to as beam smearing) compared to architectures based on stationary antennas. The RPAR's beam agility can be exploited to reduce beam-smearing effects by electronically steering the beam on a pulse-to-pulse basis within the coherent processing interval. That is, the motion of the antenna can be compensated to maintain the beam pointed at the center of resolution volume being sampled. This motion-compensated steering (MCS) could reduce the effects of antenna motion and lead to a reduction in the effective beamwidth. The purpose of this article is to present and demonstrate the MCS technique for a dual-polarization RPAR system. In this article, we provide a formulation for the MCS technique, simulations to quantify its performance in mitigating beam-smearing effects, its impacts on the quality of dual-polarization radar-variable estimates, and a practical implementation on the National Severe Storms Laboratory's Advanced Technology Demonstrator (ATD) system. Experiments were carried out using two alternative concepts of operations (CONOPS) described in this article. Results show that a system designed with sufficient pointing accuracy can be operated as an RPAR using MCS, and the impact on radar-variable estimates is comparable to that obtained when operating the same system as a stationary PAR.
  • Keywords:
  • Source:
    IEEE Transactions on Geoscience and Remote Sensing
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1