Prediction of Tornado-Like Vortex (TLV) Embedded in the 8 May 2003 Oklahoma City Tornadic Supercell Initialized from the Subkilometer Grid Spacing Analysis Produced by the Dual-Resolution GSI-Based EnVar Data Assimilation System
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Prediction of Tornado-Like Vortex (TLV) Embedded in the 8 May 2003 Oklahoma City Tornadic Supercell Initialized from the Subkilometer Grid Spacing Analysis Produced by the Dual-Resolution GSI-Based EnVar Data Assimilation System

Filetype[PDF-7.67 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Explicit forecasts of a tornado-like vortex (TLV) require subkilometer grid spacing because of their small size. Most previous TLV prediction studies started from interpolated kilometer grid spacing initial conditions (ICs) rather than subkilometer grid spacing ICs. The tornadoes embedded in the 8 May 2003 Oklahoma City tornadic supercell are used to understand the impact of IC resolution on TLV predictions. Two ICs at 500-m and 2-km grid spacings are, respectively, produced through an efficient dual-resolution (DR) and a single-coarse-resolution (SCR) EnVar ingesting a 2-km ensemble. Both experiments launch 1-h forecasts at 500-m grid spacing. Diagnostics of data assimilation (DA) cycling reveal DR produces stronger and broader rear-flank cold pools, more intense downdrafts and updrafts with finer scales, and more hydrometeors at high altitudes through accumulated differences between two DA algorithms. Relative differences in DR, compared to SCR, include the integration from higher-resolution analyses, the update for higher-resolution backgrounds, and the propagation of ensemble perturbations along higher-resolution model trajectory. Predictions for storm morphology and cold pools are more realistic in DR than in SCR. The DR-TLV tracks match better with the observed tornado tracks than SCR-TLV in timing of intensity variation, and in duration. Additional experiments suggest 1) the analyzed kinematic variables strongly influence timing of intensity variation through affecting both low-level rear-flank outflow and midlevel updraft; 2) potential temperature analysis by DR extends the second track’s duration consistent with enhanced low-level stretching, delayed broadening large-scale downdraft, and (or) increased near-surface baroclinic vorticity supply; and 3) hydrometeor analyses have little impact on TLV predictions.
  • Keywords:
  • Source:
    Monthly Weather Review, 148(7), 2909-2934
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1