The Impact of Height-Independent Errors in State Variables on the Determination of the Daytime Atmospheric Boundary Layer Depth Using the Bulk Richardson Approach
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

The Impact of Height-Independent Errors in State Variables on the Determination of the Daytime Atmospheric Boundary Layer Depth Using the Bulk Richardson Approach

Filetype[PDF-2.87 MB]



Details:

  • Journal Title:
    Journal of Atmospheric and Oceanic Technology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Rawinsonde observations have long been used to estimate the atmospheric boundary layer depth (BLD), which is an important parameter for monitoring air quality, dispersion studies, weather forecast models, and inversion systems for estimating regional surface–atmosphere fluxes of tracers. Although many approaches exist for deriving the BLDs from rawinsonde observations, the bulk Richardson approach has been found to be most appropriate. However, the impact of errors in the measured thermodynamic and kinematic fields on the estimated BLDs remains unexplored. We argue that quantifying BLD error (δBLD) estimates is equally as important as the BLDs themselves. Here we quantified δBLD by applying the bulk Richardson method to 35 years of rawinsonde data obtained from three stations in the United States: Sterling, Virginia; Amarillo, Texas; and Salt Lake City, Utah. Results revealed similar features in terms of their respective errors. A −2°C bias in temperature yielded a mean δBLD ranging from −15 to 200 m. A +2°C bias in temperature yielded a mean δBLD ranging from −214 to +18 m. For a −5% relative humidity bias, the mean δBLD ranged from −302 to +7 m. For a +5% relative humidity bias, the mean δBLD ranged from +2 to +249 m. Differences of ±2 m s−1 in the winds yielded BLD errors of ~±300 m. The δBLD increased as a function of BLD when introducing errors to the thermodynamic fields and decreased as a function of BLD when introducing errors to the kinematic fields. These findings expand upon previous work evaluating rawinsonde-derived δBLD by quantifying δBLD arising from rawinsonde-derived thermodynamic and kinematic measurements. Knowledge of δBLD is critical in, for example, intercomparison studies where rawinsonde-derived BLDs are used as references.
  • Keywords:
  • Source:
    Journal of Atmospheric and Oceanic Technology, 38(1), 47-61
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1