U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

FogNet: A multiscale 3D CNN with double-branch dense block and attention mechanism for fog prediction



Details

  • Journal Title:
    Machine Learning with Applications
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The reduction of visibility adversely affects land, marine, and air transportation. Thus, the ability to skillfully predict fog would provide utility. We predict fog visibility categories below 1600 m, 3200 m and 6400 m by post-processing numerical weather prediction model output and satellite-based sea surface temperature (SST) using a 3D-Convolutional Neural Network (3D-CNN). The target is an airport located on a barrier island adjacent to a major US port; measured visibility from this airport serves as a proxy for fog that develops over the port. The features chosen to calibrate and test the model originate from the North American Mesoscale Forecast System, with values of each feature organized on a 32 × 32 horizontal grid; the SSTs were obtained from the NASA Multiscale Ultra Resolution dataset. The input to the model is organized as a high dimensional cube containing 288 to 384 layers of 2D horizontal fields of meteorological variables (predictor maps). In this 3D-CNN (hereafter, FogNet), two parallel branches of feature extraction have been designed, one for spatially auto-correlated features (spatial-wise dense block and attention module), and the other for correlation between input variables (variable-wise dense block and attention mechanism.) To extract features representing processes occurring at different scales, a 3D multiscale dilated convolution is used. Data from 2009 to 2017 (2018 to 2020) are used to calibrate (test) the model. FogNet performance results for 6, 12− and 24−h lead times are compared to results from the High-Resolution Ensemble Forecast (HREF) system. FogNet outperformed HREF using 8 standard evaluation metrics.
  • Keywords:
  • Source:
    Machine Learning with Applications, 5(15)
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:554291bfe9c97a105e5769040630b1dfab74cdff213157e03ea1840577ebd400
  • Download URL:
  • File Type:
    Filetype[PDF - 4.99 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.