Sea Ice Detection Using U.K. TDS-1 GNSS-R Data
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Sea Ice Detection Using U.K. TDS-1 GNSS-R Data

Filetype[PDF-2.74 MB]



Details:

  • Journal Title:
    IEEE Transactions on Geoscience and Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A sea ice detection algorithm developed using the U.K. TechDemoSat-1 (U.K. TDS-1) global navigation satellite systems (GNSSs)-reflectometry data over the Arctic and Antarctic regions is presented. It is based on measuring the similarity of the received GNSS reflected waveform or delay Doppler map (DDM) to the coherent reflection model waveform. Over the open ocean, the scattered signal has a diffusive, incoherent nature; it is described by the rough surface scattering model based on the geometric optics and the Gaussian statistics for the ocean surface slopes. Over sea ice and, in particular, newly formed sea ice, the scattered signal acquires a coherence, which is characteristic for a surface with large flat areas. In order to measure the similarity of the received waveform or DDM, to the coherent reflection model, three different estimators are presented: the normalized DDM average, the trailing edge slope (TES), and the matched filter approach. Here, a probabilistic study is presented based on a Bayesian approach using two different and independent ground-truth data sets. This approach allows one to thoroughly assess the performance of the estimators. The best results are achieved for both the TES and the matched filter approach with a probability of detection of 98.5%, a probability of false alarm of ~ 3.6%, and a probability of error of 2.5%. However, the matched filter approach is preferred due to its simplicity. Data from AMSR2 processed using the Arctic Radiation and Turbulence Interaction STudy Sea Ice algorithm and from an Special Sensor Microwave Imager/Sounder radiometer processed by Ocean and Sea Ice SAF have been used as ground truth. A pixel has been classified as a sea ice pixel if the sea ice concentration (SIC) in it was larger than 15%. The measurement of the SIC is also assessed in this paper, but the nature of the U.K. TDS-1 data (lack of calibrated data) does not allow to make any specific conclusions about the SIC.
  • Keywords:
  • Source:
    IEEE Transactions on Geoscience and Remote Sensing ( Volume: 55, Issue: 9, Sept. 2017)
  • DOI:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1