Extreme Precipitation Events in Northern California during Winter 2016–17: Multiscale Analysis and Climatological Perspective
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Extreme Precipitation Events in Northern California during Winter 2016–17: Multiscale Analysis and Climatological Perspective

Filetype[PDF-17.61 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A multiscale analysis is presented of extreme precipitation events (EPEs) in Northern California during winter 2016–17, which caused flooding and contributed substantially to highly anomalous seasonal precipitation totals. The EPEs were characterized by long durations (≥7 days) and involved persistent large-scale flow patterns. The three largest EPEs involved blocking over the Bering Sea–Alaska region. A detailed investigation of the largest EPE, occurring on 2–10 February 2017, reveals that extreme precipitation was produced as four discrete cyclones moved across the eastern North Pacific equatorward of a high-amplitude blocking ridge and impacted the U.S. West Coast in rapid succession. The latter three cyclones developed and moved in conjunction with elongated negatively tilted troughs or PV streamers resulting from repeated episodes of baroclinic development and cyclonic Rossby wave breaking on the upstream flank of the block. Each of the four cyclones interacted with a PV streamer and an associated baroclinic zone established by anticyclonic wave breaking on the downstream flank of the block and, thereby, tracked into the U.S. West Coast. The serial clustering of the cyclones during the 9-day event resulted in persistent water vapor flux and lifting that supported extreme precipitation totals in Northern California. A climatological analysis for 1979–2017 reveals a significant statistical relationship between blocking over the Bering Sea–Alaska region and EPEs in Northern California, indicating that this type of blocking pattern represents a favorable large-scale scenario for extreme precipitation in Northern California.
  • Keywords:
  • Source:
    Monthly Weather Review, 148(3), 1049-1074.
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.2